PMR205 Series Metallized Impregnated Paper, 125 VAC/250 VDC

Overview

The PMR205 Series is constructed of multilayer metallized paper encapsulated and impregnated in self-extinguishing material meeting the requirements of UL 94 V–0.

Applications

Typical applications include worldwide use in contact protection, contact interference suppression and transient suppression.

Benefits

- Rated voltage: 125 VAC/250 VDC, 50/60 Hz
- Capacitance range: 0.1 1.0 μF
- Capacitance tolerance: ±20%
- Resistance range: 22 680 Ω
- Resistance tolerance: ±30%
- Lead spacing: 15.2 25.4 mm
- Climatic category: 40/085/56/B, IEC 60068–1
- Tape and reel packaging in accordance with IEC 60286-2
- RoHS Compliant and lead-free terminations

Legacy Part Number System

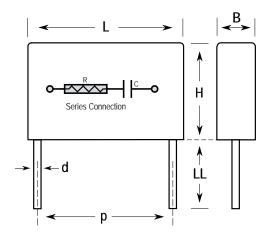
Operating temperature range of -40°C to +85°C

- Excellent self-healing properties which ensure long life even when subjected to frequent over voltages
- Good resistance to ionization due to impregnated paper dielectric
- High dV/dt capability
- Impregnated paper ensures excellent stability and reliability properties, particularly in applications with continuous operation

PMR205	А	В	6100	М	033	R30
Series	Rated Voltage (VAC)	Lead Spacing (mm)	Capacitance Code (pF)	Capacitance Tolerance	Resistance (Ω)	Lead and Packaging Code
RC Snubber, Metallized Paper	A = 125	B = 15.2 C = 20.3 E = 25.4	Digits 2 – 4 (3) indicates the first three digits of the capacitance value. First digit indicates the total number of digits in the capacitance value.	M = ±20%	Resistance Value in Ω	See Ordering Options Table

New KEMET Part Number System

Р	405	Q	E	104	М	125	А	H330
Capacitor Class	Series	Lead Spacing (mm)	Size Code	Capacitance Code (pF)	Capacitance Tolerance	Rated Voltage (VAC)	Lead and Packaging Code	Resistance (Ω)
P = Metallized Paper	RC Snubber	Q = 15.2 C = 20.3 E = 25.4	See Dimension Table	First two digits represent significant figures. Third digit specifies number of zeros.	M = ±20%	125 = 125	See Ordering Options Table	H + first two digits representing significant figures. Third digit specifies number of zeros.



Ordering Options Table

Lead Spacing Nominal (mm)	Type of Leads and Packaging	Lead Length (mm)	KEMET Lead and Packaging Code	Legacy Lead and Packaging Code
	Standard Lead and Packaging Options			
	Bulk (Bag) – Short Leads	6 +0/-1	С	R06
15.2	Bulk (Bag) – Max Length Leads	30 +5/-0	A	R30
10.2	Tape & Reel (Standard Reel)	H ₀ = 18.5 +/-0.5	L	R19T0
	Other Lead and Packaging Options			
	Tape & Reel (Large Reel)	H ₀ = 18.5 +/-0.5	Р	R19T1
	Standard Lead and Packaging Options			
	Bulk (Tray) – Short Leads	6 +0/-1	С	R06
20.3	Bulk (Bag) – Max Length Leads	30 +5/-0	A	R30
20.3	Tape & Reel (Standard Reel)	H ₀ = 18.5 +/-0.5	L	R19T0
	Other Lead and Packaging Options			
	Tape & Reel (Large Reel)	H₀= 18.5 +/-0.5	Р	R19T1
	Standard Lead and Packaging Options			
25.4	Bulk (Bag) – Short Leads	6 +0/-1	С	R06
	Bulk (Tray) – Max Length Leads	30 +5/-0	А	R30

Dimensions – Millimeters

Size Code	р		I	В		Н		L	d	
Size Code	Nominal	Tolerance	Nominal	Tolerance	Nominal	Tolerance	Nominal	Tolerance	Nominal	Tolerance
QE	15.2	+/-0.4	5.2	Maximum	10.5	Maximum	18.5	Maximum	0.8	+/-0.05
QM	15.2	+/-0.4	7.3	Maximum	13	Maximum	18.5	Maximum	0.8	+/-0.05
QP	15.2	+/-0.4	7.8	Maximum	13.5	Maximum	18.5	Maximum	0.8	+/-0.05
CE	20.3	+/-0.4	7.6	Maximum	14	Maximum	24	Maximum	0.8	+/-0.05
CJ	20.3	+/-0.4	9	Maximum	15	Maximum	24	Maximum	0.8	+/-0.05
CP	20.3	+/-0.4	11.3	Maximum	16.5	Maximum	24	Maximum	0.8	+/-0.05
EE	25.4	+/-0.4	10.6	Maximum	16.1	Maximum	30.5	Maximum	1.0	+/-0.05
	Note: See Ordering Options Table for lead length (LL) options.									

Performance Characteristics

Rated Voltage	125 VAC 50/60 Hz					
Capacitance Range	0.1 – 1.0 μF					
Capacitance Tolerance	±20%					
Resistance Range	22 – 680 Ω					
Resistance Tolerance	±30%					
Temperature Range	-40°C to +85°C					
Climatic Category	40/085/56/B					
Peak Pulse Voltage	375 V					
Series Resistance	The series resistance is defined at 1 for RC < 50 μs	kHz for RC ≥ 50 μ s and at 100 kHz				
	Minimum Values E	Between Terminals				
Insulation Resistance	C ≤ 0.33 µF	≥ 3,000 MΩ				
	C > 0.33 µF	≥ 1,000 MΩ • μF				
Power Ratings	The average losses may reach 0.5 W does not exceed + 85°C. For maximu temperature, see Derating Curves.	im permitted power dissipation vs.				
Derating Curves	Maximum Allowable Power Dissipation Case Sizes. 0.5 Pmax W 1 2 3 4 9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 Tamb 0 80 85 °C				
	Curve	Dimension B (mm)				
	1	5.2				
	2	7.3				
	2 3	7.8				
	4	9				
	5	11.3				

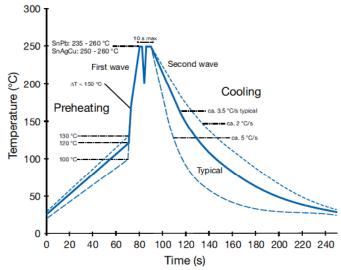
Environmental Test Data

Test	IEC Publication	Procedure
Vibration	IEC 60068–2–6 Test Fc	3 directions at 2 hours each 10 – 500 Hz at 0.75 mm or 98 m/s ²
Bump	IEC 60068–2–29 Test Eb	4,000 bumps at 390 m/s²
Solderability	IEC 60068–2–20 Test Ta	Wetting time for d > 0.8 < 1.5 seconds
Damp Heat Steady State	IEC 60068–2–78 Test Cab	+40°C and 93% RH, 56 days

Environmental Compliance

All KEMET EMI capacitors are RoHS Compliant.

Lead	Capacitance	Resistance	Maximum	n Dimensio	ons in mm	New KEMET	Leney Dert Number
Spacing (p)	Value (µF)	(Ω)	В	Н	L	Part Number	Legacy Part Number
15.2	0.10	33	5.2	10.5	18.5	P405QE104M125(1)H330	PMR205AB6100M033(1)
15.2	0.10	47	5.2	10.5	18.5	P405QE104M125(1)H470	PMR205AB6100M047(1)
15.2	0.10	100	5.2	10.5	18.5	P405QE104M125(1)H101	PMR205AB6100M100(1)
15.2	0.10	220	5.2	10.5	18.5	P405QE104M125(1)H221	PMR205AB6100M220(1)
15.2	0.15	68	5.2	10.5	18.5	P405QE154M125(1)H680	PMR205AB6150M068(1)
15.2	0.15	100	5.2	10.5	18.5	P405QE154M125(1)H101	PMR205AB6150M100(1)
15.2	0.22	47	7.3	13.0	18.5	P405QM224M125(1)H470	PMR205AB6220M047(1)
15.2	0.22	100	7.3	13.0	18.5	P405QM224M125(1)H101	PMR205AB6220M100(1)
15.2	0.22	220	7.3	13.0	18.5	P405QM224M125(1)H221	PMR205AB6220M220(1)
15.2	0.22	330	7.3	13.0	18.5	P405QM224M125(1)H331	PMR205AB6220M330(1)
15.2	0.22	470	7.3	13.0	18.5	P405QM224M125(1)H471	PMR205AB6220M470(1)
15.2	0.25	200	7.3	13.0	18.5	P405QM254M125(1)H201	PMR205AB6250M200(1)
15.2	0.25	350	7.3	13.0	18.5	P405QM254M125(1)H351	PMR205AB6250M350(1)
15.2	0.25	600	7.3	13.0	18.5	P405QM254M125(1)H601	PMR205AB6250M600(1)
15.2	0.33	47	7.8	13.5	18.5	P405QP334M125(1)H470	PMR205AB6330M047(1)
20.3	0.47	22	7.6	14.0	24.0	P405CE474M125(1)H220	PMR205AC6470M022(1)
20.3	0.47	33	7.6	14.0	24.0	P405CE474M125(1)H330	PMR205AC6470M033(1)
20.3	0.47	47	7.6	14.0	24.0	P405CE474M125(1)H470	PMR205AC6470M047(1)
20.3	0.47	68	7.6	14.0	24.0	P405CE474M125(1)H680	PMR205AC6470M068(1)
20.3	0.47	100	7.6	14.0	24.0	P405CE474M125(1)H101	PMR205AC6470M100(1)
20.3	0.47	150	7.6	14.0	24.0	P405CE474M125(1)H151	PMR205AC6470M150(1)
20.3	0.47	220	7.6	14.0	24.0	P405CE474M125(1)H221	PMR205AC6470M220(1)
20.3	0.47	330	7.6	14.0	24.0	P405CE474M125(1)H331	PMR205AC6470M330(1)
20.3	0.47	470	9.0	15.0	24.0	P405CJ474M125(1)H471	PMR205AC6470M470(1)
20.3	0.47	680	11.3	16.5	24.0	P405CP474M125(1)H681	PMR205AC6470M680(1)
25.4	1.0	33	10.6	16.1	30.5	P405EE105M125(1)H330	PMR205AE7100M033(1)
20.3	1.0	47	11.3	16.5	24.0	P405CP105M125(1)H470	PMR205AC7100M047(1)
20.3	1.0	68	11.3	16.5	24.0	P405CP105M125(1)H680	PMR205AC7100M068(1)
20.3	1.0	100	11.3	16.5	24.0	P405CP105M125(1)H101	PMR205AC7100M100(1)
20.3	1.0	150	11.3	16.5	24.0	P405CP105M125(1)H151	PMR205AC7100M150(1)
20.3	1.0	220	11.3	16.5	24.0	P405CP105M125(1)H221	PMR205AC7100M220(1)
Lead Spacing (p)	Capacitance Value (µF)	Resistance Ω	B (mm)	H (mm)	L (mm)	New KEMET Part Number	Legacy Part Number


Table 1 – Ratings & Part Number Reference

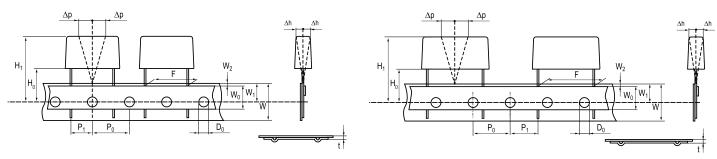
(1) Insert lead and packaging code. See Ordering Options Table for available options.

Soldering Process

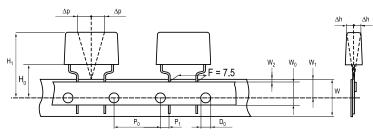
The implementation of the RoHS Directive has required the use of SnAuCu (SAC) or SnCu alloys as primary solder. These alloys require a higher liquidus temperature (217° C – 221° C) as compared to SnPb eutectic alloy (183°C). Due to the higher pre-heat and wave temperatures, the heat stress to components has increased considerably. Polypropylene capacitors are especially sensitive to soldering temperature due to the relatively low melting point of polypropylene material (160° C – 170° C). As a result, wave soldering can be destructive, especially to mechanically small polypropylene capacitors with lead spacings of 5 – 10 mm. For more information, please refer to KEMET's Recommended Soldering Profiles or contact a KEMET representative. IEC Publication 61760–1 Edition 2 may also be consulted for general guidelines.

Marking

- KEMET's logo
- · Series
- RC unit
- Capacitance
- · Rated resistance
- Rated voltage
- IEC climatic category
- Circuit diagram
- Passive flammability class
- Manufacturing date code


Packaging Quantities

Size Code	Lead Spacing (mm)	Thickness (mm)	Height (mm)	Length (mm)	Bulk Short Leads	Bulk Long Leads	Standard Reel ø 360 mm
QE	15.2	5.2	10.5	18.5	500	100	600
QM	15.2	7.3	13	18.5	400	800	400
QP	15.2	7.8	13.5	18.5	400	800	400
CE	20.3	7.6	14	24	250	1500	250
CJ	20.3	9	15	24	200	1200	250
CP	20.3	11.3	16.5	24	150	1000	180
EE	25.4	10.6	16.1	30.5	150	1000	


Lead Taping & Packaging (IEC 60286-2)

Lead Spacing 10.2 - 15.2 mm

Lead Spacing 20.3 – 22.5 mm

Formed Leads from 10.2 to 7.5 mm

Taping Specification

	Dimensions in mm										
Lead spacing	+6/-0.1	F	Formed 7.5	10.2	15.2	20.3	22.5	F			
Carrier tape width	+/-0.5	W	18	18	18	18	18	18+1/-0.5			
Hold-down tape width	+/-0.3	W ₀	9	12	12	12	12				
Position of sprocket hole	+/-0.5	W ₁	9	9	9	9	9	9 +0.75/-0.5			
Distance between tapes	Maximum	W ₂	3	3	3	3	3	3			
Sprocket hole diameter	+/-0.2	D ₀	4	4	4	4	4	4			
Feed hole lead spacing	+/-0.3	P ₀ ⁽¹⁾	12.7(4)	12.7	12.7	12.7	12.7	12.7			
Distance lead – feed hole	+/-0.7	P ₁	3.75	7.6	5.1	8.9	5.3	P ¹			
Deviation tape – plane	Maximum	Δp	1.3	1.3	1.3	1.3	1.3	1.3			
Lateral deviation	Maximum	Δh	2	2	2	2	2	2			
Total thickness	+/-0.2	t	0.7	0.7	0.7	0.7	0.9 ^{max}	0.9 ^{max}			
Sprocket hole/cap body	Nominal	H ₀ ⁽²⁾	18+2/-0	18+2/-0	18+2/-0	18+2/-0	18.5+/-0.5	18+2/-0			
Sprocket hole/top of cap body	Maximum	H ₁ ⁽³⁾	35	35	35	35	58	58 ^{max}			

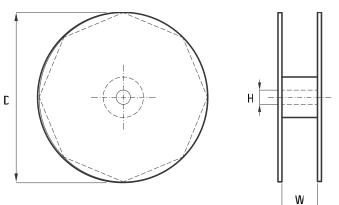
(1) Maximum cumulative feed hole error, 1 mm per 20 parts.(2) 16.5 mm available on request.

(3) Depending on case size.(4) 15 mm available on request.

Lead Taping & Packaging (IEC 60286–2) cont'd

Ammo Specifications

Series	Dir	Dimensions (mm)					
Series	Н	W	Т				
R4x, R4x+R, R7x, RSB							
F5A, F5B, F5D	360	340	59				
F6xx, F8xx							
PHExxx, PMExxx, PMRxxx	330	330	50				


Reel Specifications

Series	Dimensions (mm)					
Series	D	Н	W			
R4x, R4x+R, R7x, RSB	055					
F5A, F5B, F5D	355 500	30 25	55 (Max)			
F6xx, F8xx	500	20				
PHExxx, PMExxx, PMRxxx	360 500	30	46 (Max)			

Manufacturing Date Code (IEC-60062)

Y = Year, Z = Month								
Year	Code	Month	Code					
2000	М	January	1					
2001	N	February	2					
2002	Р	March	3					
2003	R	April	4					
2004	S	May	5					
2005	Т	June	6					
2006	U	July	7					
2007	V	August	8					
2008	W	September	9					
2009	Х	October	0					
2010	A	November	N					
2011	В	December	D					
2012	С							
2013	D							
2014	E							
2015	F							
2016	Н							
2017	J							
2018	К							
2019	L							
2020	М							

KEMET Corporation World Headquarters

2835 KEMET Way Simpsonville, SC 29681

Mailing Address: P.O. Box 5928 Greenville, SC 29606

www.kemet.com Tel: 864-963-6300 Fax: 864-963-6521

Corporate Offices

Fort Lauderdale, FL Tel: 954-766-2800

North America

Southeast Lake Mary, FL Tel: 407-855-8886

Northeast Wilmington, MA Tel: 978-658-1663

Central Novi, MI Tel: 248-994-1030

West Milpitas, CA Tel: 408-433-9950

Mexico Guadalajara, Jalisco Tel: 52-33-3123-2141

Europe

Southern Europe Paris, France Tel: 33-1-4646-1006

Sasso Marconi, Italy Tel: 39-051-939111

Central Europe Landsberg, Germany Tel: 49-8191-3350800

Kamen, Germany Tel: 49-2307-438110

Northern Europe Bishop's Stortford, United Kingdom Tel: 44-1279-460122

Espoo, Finland Tel: 358-9-5406-5000

Asia

Northeast Asia Hong Kong Tel: 852-2305-1168

Shenzhen, China Tel: 86-755-2518-1306

Beijing, China Tel: 86-10-5829-1711

Shanghai, China Tel: 86-21-6447-0707

Taipei, Taiwan Tel: 886-2-27528585

Southeast Asia Singapore Tel: 65-6586-1900

Penang, Malaysia Tel: 60-4-6430200

Bangalore, India Tel: 91-806-53-76817

Note: KEMET reserves the right to modify minor details of internal and external construction at any time in the interest of product improvement. KEMET does not assume any responsibility for infringement that might result from the use of KEMET Capacitors in potential circuit designs. KEMET is a registered trademark of KEMET Electronics Corporation.

Other KEMET Resources

Tools		
Resource	Location	
Configure A Part: CapEdge	http://capacitoredge.kemet.com	
SPICE & FIT Software	http://www.kemet.com/spice	
Search Our FAQs: KnowledgeEdge	http://www.kemet.com/keask	
Electrolytic LifeCalculator	http://www.kemet.com:8080/elc	

Product Information		
Resource	Location	
Products	http://www.kemet.com/products	
Technical Resources (Including Soldering Techniques)	http://www.kemet.com/technicalpapers	
RoHS Statement	http://www.kemet.com/rohs	
Quality Documents	http://www.kemet.com/qualitydocuments	

Product Request		
Resource	Location	
Sample Request	http://www.kemet.com/sample	
Engineering Kit Request	http://www.kemet.com/kits	

Contact		
Resource	Location	
Website	www.kemet.com	
Contact Us	http://www.kemet.com/contact	
Investor Relations	http://www.kemet.com/ir	
Call Us	1-877-MyKEMET	
Twitter	http://twitter.com/kemetcapacitors	

Disclaimer

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed.

All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.

Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.

